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I. INTRODUCTION

Phased array antennas can steer transmitted or received signals either linearly or in two dimensions
without mechanically oscillating the antenna. These antennas are currently constructed using ferrite
phase shifting elements. Due to the type of circuit requirements necessary to operate these
antennas, they are costly, large and heavy. Therefore, the use 6f these antennas has been limited
primarily to military applications which are strategically dependent on such capabilities. In order to
make these devices available for many other commercial and military uses, the basic concept of the
antenna must be improved. If ferroelectric materials could be used instead of ferrites, phased array
antennas would be totally revolutionized.

A ceramic Barium Strontium Titanate, Bal-xSrxTiO3, (BSTO), electro-optic phase shifter using

a planar microstrip construction has been demonstrated. I In order to meet the required
performance specifications, maximum phase shifting ability, the electronic properties in the low
frequency (KHz) and microwave regions (GHz) must be optimized. As part of this optimization
process, various composites of BSTO and non-ferroelectric oxides have been formulated. The
BSTO-Alumina composite has a patent pending on its formulations and the other composites which
are designated herein as BSTO-Oxide II and BSTO-Oxide III currently have a patent undergoing the
filing process. All of these composites possess improved electronic properties. The comparison of

the compositions and phase formation of the various BSTO-oxide ceramic composites will be made
and related to their electronic properties. This report will outline some of the initial findings and
compare them to the results found for pure BSTO.

2. EXPERIMENTAL

2.1 Ceramic Processing

Powder forms of Barium Titanate and Strontium Titanate were obtained from Ferro Corporation,
Transelco Division, Pen Yan, N.Y. ( product nos. 219-6 and 218 respectively), stoichiometrically
mixed to achieve Ba,6 Sr,4 TiO 3 and ball-milled in ethanol using 3/16" alumina media for 24 hrs. The

resulting BSTO was then air-dried, calcined at I 100()C and mixed with either powder alumina
(ALCOA Industrial Chemicals, Bauxite, AR, distributed by Whittaker, Clark, and Daniels, South
Plainfield, N.J., product no. AI6-SG) or a second oxide (oxide i1) or a third oxide (oxide lII) in the
proper weight percent and ball-milled again in a slurry of ethanol using the alumina grinding media
for an addtional 24 hrs.

3 wt% of Rholpex B-60A (Rohm and Haas Co., Philadephia, PA) binder is added to the
resulting BSTO/oxide mixture. The mixture is then air-dried and dry-pressed uniaxially to a pressure
of approximately 7000 p.s.i.. Sintering schedules were obtained by employing a deflectometer such
as Mitutoyo digimatic indicator and miniprocessor (Mitutoyo Corp., Paramus N.J.). The densities,
% Porosity and % Absorption are given in Table I. Results were obtained by performing an
immersion density .in ethanol using a modified ASTM standard. It should be noted that all of the
examined samples have % liquid absorption of less than 2%.

Two metallization techniques were employed one involved painting on two circular, aligned
electrodes, one on either side of the specimens, using high purity silver
paint (SPI Supplies West Chester, PA) and attaching wires using high purity silver epoxy,
Magnobond 8000, made by Magnolia Plastics, Inc., Chamblee, GA. The other technique utilized



the screen printing of electrodes using silver conductive ink (FERRO #3350, Electronic Materials
Division, Santa Barbara, CA) and wires were attached by dipping the specimens in a bath of 2`0
silver, 62% tin and 36%o lead solder.

2.2 Electronic Measurements

The dielectric constants, e', loss tan b, % tunability were determined for all composites. The

dielectric constant, e', where

FE ' - iE" (1)

is a complex function. The loss tan 6 can be defined as:

tan 6 = E" / E' (2)

and the % tunability of a material is determined using the following equation:

% tunability = { F'(0) - E'(Vapp)}/ {E'(0)} (3)

The tunability measurements were taken with an applied electric field which ranged from 0 to 3.0

V/micron (pm). The electronic properties given in the tables were measured at a frequency of I
KHz. Capacitance measurements for all materials were taken using an HP4284A LCR meter and
the dielectric constants were calculated using equation (4) and the sample dimensions.

F' = Ct/AF0  where (4)

F' = dielectric constant of the layer
C = capacitance of BSTO
t = thickness
A = area

0= 8.8542 x 10-12 F/m

Further calculations were done to correct for the effect of fringe capacitance. The dielectric constant
has been calculated from corrected capacitance values, Ccorr, according to equation (5). The edge
(fringe) capacitance, Ce, was calculated from either equation (6) or (7) depending on electroding
configuration. These equations assume that the ground capacitance is zero and the thickness of the
metal layer is much less than the thickness of the specimen.

Ccorr = Cmeas - Ce where Cmeas = (5)
measured capacitance value and Ce is defined below

Equal electrodes smaller than the specimen:

Ce = (0.0019 Cmeas - 0.00252 In t + 0.0068) P (6)

2



TABLE I   Sample Descriptions of BSTO-Oxide Ceramic Composites. 

BSTO-Alumina 

Additive Density (g/cc) % Porosity % Absorption 
Content (wt%) 

0 wt% A1203 5.373 3.16 0.48 
1 wt% A1203 5.319 8.94 1.43 
5 wt% AJ203 4.744 6.63 1.10 

10wt%Al2O3 4.£87 7.15 1.22 
20 wt% A1203 4.222 7.81 1.46 
30 wt% A1203 3.965 5.05 1.03 
60 wt% A1203 3.797 5.47 1.20 
80 \vt% A1203 •3.615    . 7.48 1.72 
pure AI2(>3 3.992 4.44 0.95 

BSTO-Oxide II 

Additive Density (g/cc) % Porosity % Absorption 
Content (wt%) 

1 wt% Oxide n 5.22 10.31 1.64 
5 wt% Oxide II 5.28 8.86 1.51 

10 wt% Oxide II 5.30 7.67 1.23 
15 wt% Oxide II 5.12 8.27 1.28 
20 wt% Oxide II 5.37 10.31 1.64 
25 wt% Oxide II 5.44 14.24 2.33 
30 wt% Oxide II 5.40 9.73 1.60 
40 wt% Oxide II 5.36 10.59 1.67 
50 wt% Oxide II 5.22 10.34 1.70 
60 wt% Oxide II 5.38 10.28 1.58 

BSTO-Oxide in 

Additive Density (g/cc) % Porosity % Absorption 
Content (wt%) 

1 wt% Oxide III 5.00 10.70 1.94 
5 wt% Oxide III 5.30 3.97 0.63 

10 wt% Oxide III 5.19 3.36 0.55 
15 wt% Oxide III 4.95 5.38 0.97 
20 wt% Oxide III 5.03 5.25 0.87 
25 wt% Oxide III 4.81 3.30 0.55 
30 wt% Oxide III 4.69 4.27 0.81 
40 wt% Oxide III 4.42 5.40 0.98 
50 wt% Oxide III 4.11 5.16 0.99 
60 wt% Oxide III .    3.94 2.56 0.75 
80 wt% Oxide III 3.52 10.34 1.87 



Diameter of the electrodes = diameter of the specimen:

Ce = (0.0041 Cmeas - 0 0034 In t + 0.0122) P (7)

where P = Tr (delectrode + t ) and delectrode = diameter of the electrode and
t --thickness of the specimen.

3. RESULTS AND DISCUSSION

3 1 SEM and EDX Analysis

SEM examination of the individual bulk ceramic layers of the BSTO-Alumina composite revealed
that a second phase became apparent in alumina additions as low as 10 wt% becoming more
dominant at 35 wt0 o alumina and then disappearing by the time 60 wiOo is achieved. Micrographs
for these microstructures are displayed in Figs. I(a) - 1(c). EDX of the small grains revealed a
depletion in alumina while EDX of the larger, smoother grains displayed an increase in the alumina
content. This suggests the formation of a barium aluminum titanium oxide phase.

SEM examination of the indi vidual BSTO-Oxide II and BSTO-Oxide III compositions
showed very little microstructural difference with added percentages of oxide. A small reduction in
grain size was the most apparent difference. A micrograph of typical BSTO-Oxide II and BSTO-
Oxide III microstructures are shown in Figs. 2(a) and (b) . EDX analysis of the individual layers
showed" no unusual behavior with the percentage of oxide II or oxide III gradually increasing with
steady decreases in barium, strontium and titanium.

3.2 X-Ray Diffraction

A summary of the X-Ray diffraction results for the various compositions of the BSTO composites
are given in Table 1I. It should be noted that there are three different forms'of Barium Aluminum
Oxide listed within the table. In agreement with EDX, the results reveal that when alumina is added
to BSTO in small amounts, < 20 wt%, a second phase of Barium Aluminum Titanate,
Ba 3Al 10TiO 20 , is formed. In compositions having between 20 and 40 wt% alumina another second
phase of Barium Aluminum Titanate forms ie. BaAI6TiO 1 2. In this composition range we are also
seeing traces of Barium Aluminum Oxide. By the time the composition reaches 60 wt% alumina no
forms of Barium Aluminum Titanate are detectable. Only faint traces of BSTO are discernible at
this composition. At 60 wt% alumina we were unable to discern which phase was most prevalent
or even if all three phases were present. At 80 wt% alumina a specific phase of Barium Aluminum
Oxide still could not be identified, but definite Al20 3 peaks became apparent. Pure alumina
provided a complete diffraction pattern.

The results for the BSTO-Oxide If composites reveal a completely different picture. The
results observed for these composites show that initially oxide II appears to be absorbed into the
BSTO lattice structure. At compositions from 5-50 wt% oxide II, BSTO is the more dominant
pattern, but at 60 wt%, oxide 1I becomes predominant. It is also inieresting to note that no second
phase materials were detected at any of the compositions for this composite. Similar results were
observed for the BSTO-Oxide III composites. The only variation for this composite is that traces
of oxide III are apparent even with only a I wt% additon.

4



TABLE 11 X-Ray Diffraction Results.

BSTO-Alumina

Oxitde (Content Detected PhctL, S

"pure BSTO Full pattern for Ba 6Sr 4TiO 3
I 'f 0 oAl-jo BSTO and Ba3A1 j)TiO2111 wt%,/ A120 3  BSTO and Ba 3 AI loTtO20i
5 %%1% A1203 BSTO and Ba3AI lojitO20

10 %%18 A5203 BSTO and BasAl I0TiOi 0
15 ,1% A1203 BSTO and Ba1 AI loTiO20
2(1 %,1% A1203• BSTO. Ba 3 AI 10 TiO2,0 and BaAI 13 .20210.8
25 1%101 AI,0 3  BSTO. Ba3 AIIjTiO21 ,. BaAI6 TiO 12 andBaAl• -)0, )8-
3I1 wt% AI20 3  BasAI1 oTiO, BaAI6 TiOI 2 , BSTO and BaAI 13.20 2u

35 iv1% A12 03  BaIAIIoTiO0-. BaAI6 TiOl 2. BSTO and BaAI1 3 202O 8
40 •% AI20 3  BaiAlljTitO20. BaAi 6TiOI2. BSTO and BaAI13 2020.8
60 %%1% AI20 3  Barium Aluminum Oxide - phase unknowvn and BSTO
80 wVl, A120 3  Barium Aluminum Oxide - phase unknovn and AI0,
pure A]201 Full AI201 pattern

3.3 Electronic Properties

The results for the electronic properties of the BSTO-Alumina composites are shown in Table I1I.
The dielectric constant of the specimens is quickly reduced for compositions up to 35 w1%o alumina
at which point the rate of reduction in the dielectric constant is diminished. The dielectric loss, tan
6i, reported here for all specimens includes the loss caused by the metal contact, improved
metallization for these materials will definitely result in loss tan 5 < 0.01. The % tunability of the
specimens could be-increased with an increase in applied field and by using thinner specimens
Even so, the tunability of the composites is maintained at reasonable levels (>10%) up to 20 wtýo

alumina at which time the tunability decreases rapidly. A graph of the Tunability versus Applied
Field is shown in Fig. 3. The inset shows the Dielectric Constant of these compositions versus
Tunability at an electric field of 0.7 V/jim.

TABLE III Electronic Properties ofBSTO (Ba = .6) and Alumina Ceramic Composites.

,.lu,,uno Dielectric Loss Tu 7'nahilitv Electric lield
Content Constant Tangent I* P.in)
(wt %)
0.(0 3299.08 0,0195 19.91 0.773
H.) 2606.97 0,0122 22.50 0,76
5.0 1260.53 0.0630* 13.88 o.6(,7

10.0 426.74 0.0163 4.79 0.39
15.0 269.25 0.0145 5.72 (0.87
20.0 186.01 0.0181 3.58 0.48
25.0 83.07 0,0120
30.0 53.43 0,0135 5.13 2.21
35.0 27.74 0.(X)29 0.5! 0.83
40.0 25 62 0. 1616*
60.0 16.58 0(.)09 0.01 0.60
80.0 12.70 00) 16
I00.0 8.37 0.0)36 * samples had poor contacts

5



FIGURE 1   (a) SEM micrograph of BSTO-10 wt% Alumina bulk ceramic 
composite microstructure, (b) SEM micrograph of BSTO-35 wt% Alumina bulk ceramic 
composite microstructure, (c) SEM micrograph of BSTO-60 wt % Alumina bulk ceramic 
composite microstructure. 

mm '■■■■■■■■'"'- ■■■■:.,-;fi» 

H.-}i 
W- ■%k? 

i'-s»»***'-*^-    wixfr 

FIGURE 2   (a) SEM micrograph of BSTO-40 wt% Oxide II buik ceramic composite 
microstructure, (b) SEM micrograph of BSTO-40 wt% Oxide III bulk ceramic 
composite microstructure. 
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FIGURE 3 Tunability (%) versus Applied Electric Field (V/pm) for BSTO-Alumina
composites (inset shows the Dielectric Constant versus Tunability (%)
at an electric field of 0.7 V/pm).

Table IV contains the electronic data for the BSTO-Oxide II ceramic composites. As shown
in Table IV the loss tangent of the materials are relatively low (<0.02). It appears that as. the
dieiectric constant decreased the loss was lowered. The dielectric constant of the composites
decreases with the addition of oxide II. The semi-log plot of the dielectric constants of the
BSTO-Alumina composites, the BSTO-Oxide II composites and the BSTO-Oxide III composites is
shown in Fig. 4. As shown in Fig. 4, the rate of reduction is similar for both composites for
compositions < 20 wt%. However, between 20 wt% - 50 wt% the rate of reduction in the dielectric
constant is less than that of the BSTO-Alumina composites. The decrease in the dielectric
consant for the two sets of composites is again similar from 60 wt%-100 wt% additive content.
However, the magnitude of the dielectric constant for all of the BSTO-Alumina composites is less
than that of the BSTO-Oxide II and BSTO-Oxide III composites. This may be due to the formation
of the second phases in the BSTO-Alumina composites.

The Tunability (%) versus Applied Electric Field for several compositions of BSTO-Oxide
II composites is shown in Fig. 5. The inset represents the Dielectric Constant of these
compositions versus Tunability (%) at an electric field of 0.7 V/pm. It is apparent that the
tunability decreases for compositions less than 30 wt% oxide II. For additive contents >25 wt%
and at similar electric fields, the tunability of the BSTO-Oxide II composites is greater than that of
the BSTO-Alumina composites. This may again be due to. the formation of second phases in the
BSTO-Alumina composites, creating additional non-ferroelectric phases which inhibit tuning in the
material.

7



TABLE IV Electronic Properties of BSTO-Oxide II Ceramic Composites.

Oxide if Dielectric Loss % Tunability Electric Field
Content Constant Tangent (l 'pm)

0.0 3299.08 0.0195 19.91 0.73
1.0 2696.77 0.0042 46.01 2.72
5.0 2047.00 0.0138 12.70 0.76

10.0 1166.93 0.0111 7.68 0.68
15.0 413.05 0.0159 5.07 1.11
20.0 399.39 0.0152 5.39 0.76
25.0 273.96 0.0240 6.02 1.02
30.0 233.47 0.0098 1.21 0.73
35.0 183.33 0.0091 5.87 0.95

40.0 162.26 0.0095 0.70 0.71
50.0 92.73 0.0071 1.67 1.12
60.0 69.80 0.0098
80.0 17.31 0.0056

100.0 15.98 0.0018 0.05 0.27

TABLE V 'Electronic Properties of BSTO-Oxide III Ceramic Composites.

Oxide IMI .Dielectric Loss % Tunabilitv Electric Field
Content Constant Tangent (10 Pm)

0.0 3299.08 0.0195 19.91 0.73
1.0 1276.21 0.0015 16.07 2.32
5.0 1770.42 0.0014

10.0 1509.19 0.0018
15.0 1146.79 0.0011 7.270 1.91
20.0 1079.21 0.0009 15.95 2.33
25.0 783.17 0.0007 17.46 2.45
30.0 750.93 0.0008 9.353 1.62
35.0 532.49 0.0006 18.00 2.07
40.0 416.40 0.0009 19.81 2.53
50.0 280.75 0.0117* 9.550 2.14
60.0 117.67 0.0006 11.08 2.70
80.0 17.00 0.0008 0.61 1.72

100.0 13.96 0.0009
* samples had poor contacts

8
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FIGURE 6 Loss Tangent versus Oxide III Content (wt %) for BSTO-Oxide III
composites.

The electronic data for the BSTO-Oxide III composites is shown in Table V. As shown in
Fig. 6, the loss tangent of the composites are extremely low for most all composition
(decreases slightly with an increase in oxide III). These formulations could therefore be used at
much higher operating frequencies, i.e., at millimeter wave range, @ 77 GHz. As shown in Fig. 4,
the other electronic properties are similar to BSTO-Oxide H, except for the fact that the dielectric
constants are even higher for these composites in the range 15-60 wt%/o. The tunability decreases
slowly with increase in oxide Ill content and the composites exhibit high tunabilities (>10%) up to
60 wt% oxide Ill which was not the case for the other oxides.

4. CONCLUSIONS•

Composites of BSTO and non-ferroelectric oxide ceramics have been fabricated and characterized.
The composites have all demonstrated adjustable electronic properties. The dielectric constant of
the BSTO-Alumina composites decreases faster than the BSTO-Oxide II and the BSTO-Oxide III
composites from 20-50 wt/o alumina content and is related to the formation of multiple second
phases in this composition range for the BSTO-Alumina composites. The BSTO-Oxide III
composites exhibited the lowest loss (<0.001) and highest dielectric constants in the composition
range from 15-60 wt% oxide content. The low loss of the BSTO-Oxide III composites makes higher
operating frequencies i.e, millimeter wave range, 77 GHz possible.

10
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